Domain Adaptation for Visual Understanding
By Richa Singh, Mayank Vatsa, Vishal M. Patel & Nalini Ratha
- Release Date: 2020-01-08
- Genre: Computers & Internet
Description
This unique volume reviews the latest advances in domain adaptation in the training of machine learning algorithms for visual understanding, offering valuable insights from an international selection of experts in the field. The text presents a diverse selection of novel techniques, covering applications of object recognition, face recognition, and action and event recognition.
Topics and features:
Reviews the domain adaptation-based machine learning algorithms available for visual understanding, and provides a deep metric learning approachIntroduces a novel unsupervised method for image-to-image translation, and a video segment retrieval model that utilizes ensemble learningProposes a unique way to determine which dataset is most useful in the base training, in order to improve the transferability of deep neural networksDescribes a quantitative method for estimating the discrepancy between the source and target data to enhance image classification performancePresents a technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptationExamines an original interpolation-based approach to address the issue of tracking model degradation in correlation filter-based methods
This authoritative work will serve as an invaluable reference for researchers and practitioners interested in machine learning-based visual recognition and understanding.
Dr. Richa Singh is a Professor at Indraprastha Institute of Information Technology, Delhi, India. Dr. Mayank Vatsa is a Professor at the same institution. Dr. Vishal M. Patel is an Assistant Professor in the Department of Electrical and Computer Engineering at Johns Hopkins University, Baltimore, MD, USA. Dr. Nalini Ratha is a Research Staff Member at the IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA.