Hyperautomation for Next-Generation Industries
By Rajesh Kumar Dhanaraj, M. Nalini, A. Daniel, Ali Kashif Bashir & Balamurugan Balusamy
- Release Date: 2024-09-09
- Genre: Engineering
Description
This book is essential for anyone looking to understand how hyperautomation can revolutionize businesses by simplifying operations, reducing errors, and creating more intelligent and adaptable workplaces through the use of automation technologies such as artificial intelligence, machine learning, and robotic process automation.
The use of automation technologies to simplify any and every activity conceivable in a business, allowing repeated operations to operate without manual intervention, is known as hyperautomation. Hyperautomation transforms current and old processes and equipment by utilizing artificial intelligence, machine learning, and robotic process automation. This digital transformation may assist a business in gaining cost and resource efficiency, allowing it to prosper in a more competitive environment. With the advancement of automation technologies, hyperautomation is becoming more prevalent. Companies are shifting their methods to create more human-centered and intelligent workplaces. This change has ushered in a new era for organizations that rely on technology and automation tools to stay competitive. Businesses may move beyond technology’s distinct advantages to genuine digital agility and scale adaptability when all forms of automation operate together in close partnership.
Automation tools must be simple to incorporate into the current technological stack while not requiring too much effort from IT. A platform must be able to plug and play with a wide range of technologies to achieve hyperautomation. The interdependence of automation technologies is a property that is connected to hyperautomation. Hyperautomation saves individuals time and money by reducing errors. Hyperautomation has the potential to create a workplace that is intelligent, adaptable, and capable of making quick, accurate decisions based on data and insights. Model recognition is used to determine what to do next and to optimize processes with the least amount of human engagement possible.